
CCGlab manual
version 7.2 May 13, 2021 coloured text means changes from previous release Cem Bozşahin
Home: github.com/bozsahin/ccglab (all repos cited have the same URL prefix)
Download: git clone https://github.com/bozsahin/ccglab Lisboa, Ankara, Datça 2015–2021

1 Introduction
CCGlab is a tool for experimenting with Combinatory Categorial Grammar (CCG), including its linguistic
and probabilistic modeling aspects (Steedman 1996, 2000, 2012, Clark and Curran 2003, Zettlemoyer and
Collins 2005, Steedman and Baldridge 2011, Bozşahin 2012).

It is written in COMMON LISP. Knowing Lisp helps, but CCGlab has its own syntax, so it is not required.1

There is an installer script at home cite of CCGlab to install all software that is required.
CCGlab implements all the established combinators of CCG, namely application, composition and sub-

stitution, including their finite powers (quadratic for S; cubic for B), in all their directional variants. There
is a compiler for T to implement case systems. Every rule has an on/off switch. CCGlab also implements
some experimental projection rules. By default, only basic CCG (application, composition, substitution, and
powers) is on. You can turn on other rules as desired. The table at the end explains how.

CCGlab is designed with linguists, cognitive scientists and computational linguists in mind. Source
grammar is lexical specifications much like in Steedman papers, and unary rules. Unlike unification-inspired
systems, the logical form (LF) is associated with the overall syntactic category, and the underlying lambda-
calculus is visible at all times. In-depth linguistic exploration and wide-coverage parsing to logical form are
long-term goals.

Hereafter we assume basic familiarity with CCG.

2 Basics
Slash modalities are implemented (see Baldridge 2002, Steedman and Baldridge 2011). The examples below
show raw input to CCGlab.2 The first three are lexical items, and the last one is a unary rule.

John n := np[agr=3s] : !john ;
likes v := (s\np[agr=3s])/^np : \x\y. !like x y;
and x := (@X\*@X)/*@X : \p\q\x. !and (p x)(q x);
(L1) np[agr=?x] : lf --> s/(s\np[agr=?x]) : \lf\p. p lf ;

Order of specifications and whitespacing are not important except for unary rules; they apply in order. They
do not apply to same category twice. Later unary rules can see the results of earlier ones.

Structural unification plays no role in CCGlab because we want to see how far grammatical inference can
be carried out by combinators. Only atomic categories can carry features. Features are checked for atomic
category consistency only, and no feature is passed non-locally. All features are simple, feature variables
(prefixed by ?) are for values only, they are local to a category, and they are atomic-valued. For example, if
we have the category sequence (a) below, we get (b) by composition, not (c). We could in principle compile
all finite feature values for any basic category in a grammar and get rid of its features (but nobody does that).

(a) s[f1=?x1,f2=v2]/s[f1=?x1] s[f1=v1,f2=?x2]/np[f2=?x2]
(b) s[f1=v1,f2=v2]/np[f2=?x2]
(c) s[f1=v1,f2=v2]/np[f2=v2]

Meta-categories such as (X\X)/X, written in CCGlab as (@X\@X)/@X, are allowed with application only,
which maintains a very important property of CCG: it is procedurally neutral (Pareschi and Steedman, 1987).
Given two substantive categories and CCG’s understanding of universal rules, there is only one way to com-
bine them, so that the parser can eschew other rules for that sequent if it succeeds in one rule. For this
reason, ‘X$’ categories that you see in CCG papers have not been incorporated. They would require struc-

1This much Lisp is good to know: CCGlab is an interpreted Common Lisp system with a command-line interface, sitting on top
of Lisp’s read-eval-print loop (REPL). You call CCGlab functions from this REPL, or write them as scripts to run CCGlab offline.
Functions are called by writing the function name first, followed by a space-separated sequence of arguments, all in one parenthesis.
If you don’t want Lisp to evaluate an object, put one single quote just before it; e.g. ’a. Unlike a, Lisp won’t evaluate a in ’a. For
function calls, what would be f(a,b) in a python-like language would be (f a b) in Lisp. CCGlab follows these Lisp conventions.
The golden meta-rules for beginners are: Lisp is allergic to unnecessary punctuation, and it is a head-initial functional language. There
is no built-in currying of functions.

2The mapping of modalities to those in papers is (. , .), (^,�), (*,?), (+,×), from CCGlab notation to CCG notation.



2

tured unification and jeopardize procedural neutralism. What that means for CCGlab is that we can write
(@X\@X)/@X kind of category, as above, or say @Y/@Y, but we cannot write @X/(@X/NP) or @X/(@X/@Y),
because matching (@X/NP) or (@X/@Y) to yield @X would require structured unification.

No basic category is built-in to CCGlab. Singleton categories are supported; see Bozşahin and Güven
(2018) for their syntax and semantics. They allow us to continue to avoid wrapping in verb-particle construc-
tions, and render idiomatically combining expressions and phrasal idioms as simple categorial possibilities.
For example, in CCGlab notation:

(a) picked := (s\np)/"up"/np : \x\y\z.!pick _ y x z;

(b) kicked := (s\np)/"the bucket" : \y\z.!die _ y z;

(c) spilled := (s\np)/np[h=beans,spec=p] : \y\z.!reveal _ y !secret z;

where "up" and "the bucket" are singleton categories (i.e. surface strings turned into singleton category,
with constant value), and np[h=beans,spec=p] in (c) means this NP must be headed by beans, which
makes it a special subcategorization, by spec=p, meaning +special. These are not built-in features (there is
no such thing in CCGlab). The underscore is just an ad hoc reminder that the first thing that follows is not
an argument of the predicate. It is included here to show that LF set-up is all up to you.

Below is the output for the Latin phrase for Balbus is building the wall. Currently there is no separate
morphology component, so we have morphological case syntactically combining in the example. The first
column is the rule index. The rest of the line is about the current step: a lexical assumption, result of a unary
rule, or one step of combination, in which the combining rule is shown. This is the output of the parser in
response to (p ’(balb us mur um aedificat)).

Derivation 1
--------------
LEX (BALB) := N

: BALB
LEX (US) := (S/(S\NP))\N

: (LAM X (LAM P (P X)))
< (BALB)(US) := S/(S\NP)

: ((LAM X (LAM P (P X))) BALB)
LEX (MUR) := N

: WALL
LEX (UM) := ((S\NP)/((S\NP)\NP))\N

: (LAM X (LAM P (P X)))
< (MUR)(UM) := (S\NP)/((S\NP)\NP)

: ((LAM X (LAM P (P X))) WALL)
LEX (AEDIFICAT) := (S\NP)\NP

: (LAM X (LAM Y ((BUILD X) Y)))
> (MUR UM)(AEDIFICAT) := S\NP

: (((LAM X (LAM P (P X))) WALL) (LAM X (LAM Y ((BUILD X) Y))))
> (BALB US)(MUR UM AEDIFICAT) := S

: (((LAM X (LAM P (P X))) BALB)
(((LAM X (LAM P (P X))) WALL) (LAM X (LAM Y ((BUILD X) Y)))))

Final LF, normal-order evaluated:

((BUILD WALL) BALB) =
(BUILD WALL BALB)

The parse ranking component prints associated parameter-weighted local counts of features and the final
count, for verification. Every lexical entry, word or unary rule, is assigned a parameter. In the example
below, all parameters were set to unity so that weighted counting to be described in (2) below can be seen
easily. The only feature is the number of times lexical items are used in a derivation. 17 is the total here.
The example is output in response to (rank ’(balb us mur um aedificat)).

Most likely LF for the input: (BALB US MUR UM AEDIFICAT)

((BUILD WALL) BALB) =
(BUILD WALL BALB)

Cumulative weight: 17.0

Most probable derivation for it: (5 1 1)
--------------------------------
LEX 1.0 (BALB) := N

: BALB
LEX 1.0 (US) := (S/(S\NP))\N

: (LAM X (LAM P (P X)))
< 2.0 (BALB)(US) := S/(S\NP)



3

: ((LAM X (LAM P (P X))) BALB)
LEX 1.0 (MUR) := N

: WALL
LEX 1.0 (UM) := ((S\NP)/((S\NP)\NP))\N

: (LAM X (LAM P (P X)))
< 2.0 (MUR)(UM) := (S\NP)/((S\NP)\NP)

: ((LAM X (LAM P (P X))) WALL)
LEX 1.0 (AEDIFICAT) := (S\NP)\NP

: (LAM X (LAM Y ((BUILD X) Y)))
> 3.0 (MUR UM)(AEDIFICAT) := S\NP

: (((LAM X (LAM P (P X))) WALL) (LAM X (LAM Y ((BUILD X) Y))))
> 17.0 (BALB US)(MUR UM AEDIFICAT) := S

: (((LAM X (LAM P (P X))) BALB)

The parsing component computes all the constituents and their LFs which are derivable from lexical as-
sumptions. The ranking component computes (i) the most likely LF for a given string, (ii) the most probable
derivation for that LF, and (iii) the highest-weighted derivation for any LF for the string (not shown above
for brevity). The parsing component first generates them with unity weights (1.0) when the grammar is first
compiled from .ccg textual form to .ccg.lisp compiled form. Your ranking (i.e. training) component can
build on that to modify lexical parameters after parameter estimation.3

The algorithm for the basic training/ranking component is more or less standard in Probabilistic CCG
(PCCG). The one we use throughout the manual is summarized from Zettlemoyer and Collins (2005):

argmax
L

P(L | S; θ̄) = argmax
L

∑
D

P(L,D | S; θ̄) (1)

where S is the sequence of words to be parsed, L is a logical form for it, D is a sequence of CCG derivations for
the (L,S) pair, and θ̄ is the n-dimensional parameter vector for a grammar of size n (the total number of lex-
ical items and rules). The term on the right-hand side is induced from the following relation of probabilities
and parameters in PCCG (ibid.);4 where f̄ is a vector of 3-argument functions < f1(L,D,S), · · · fn(L,D,S)>:

P(L,D | S; θ̄) =
e f̄ (L,D,S)·θ̄

∑
L

∑
D

e f̄ (L,D,S)·θ̄
(2)

The functions of f̄ count local substructure in D. By default, fi is the number of times the lexical element i
(item or rule) is used in D. If you want to count other substructures in D or L, as in Clark and Curran (2003),
you need to write some code.5

CCGlab is Lisp code in three layers, Paul Graham 1994-style: (i) the representational layer, which is
based on (name value) pairs, and lists of such pairs; (ii) the parsing layer, which is based on hash tables
and the representation layer; and (iii) the post-parsing layer, which is based on λ -calculus and the parsing
layer, which is used for checking LF equivalence.6 Combinators are Lisp macros on the last layer. Because
our lambda layer has nothing to do with Lisp’s lambdas (the internals of LFs are always visible), you can
use the top layer as a debugging tool for your LF assumptions. It has two LF evaluators: normal-order and
applicative-order. If they do not return the same LF on the same parse result, then there is something strange
about your LF.7

3 CCGlab file types
We recommend a separate directory for each project to keep things clean. CCGlabwill need several files in
the working directory to set up a CCG grammar or a model. Many of them would be depending on need.

By a grammar we mean a set of CCG assumptions like the one in §2 which you want to subject to CCG’s
universal combinatorics. By a model we mean a version of the grammar which you’ve subjected to empirical

3There is only one compiled grammar file type, with .ccg.lisp extension, because of common representation.
4You may be alarmed by the exponentiation in formula (2) potentially causing floating-point overflow, and may worry about what

your value range should be for θi to avoid that. We recommend starting with 0 < θi ≤ 1. Keep also in mind that θi are not probabilities
but weights. They can be negative. Formula (2) takes care of any weight.

5A plug-in is provided, called plugin-count-more-substructure. That was one motivation for giving detailed specs. There is
a growing body of literature on the topic, starting with Clark and Curran.

6This layer is post-parsing in the sense that although parsing builds an LF at every step, it does not reduce it till the very end.
Therefore unevaluated LFs of CCGlab are available for exploration.

7It doesn’t follow that your LF is correct if both evaluations return the same result. If it did, we wouldn’t need empirical sciences
like linguistics and cognitive science. Your categories, and derivations with them, can tell you more.



4

training and parameter estimation, results of which you want to subject to CCG’s universal combinatorics.
They have the same format.

A project say with name P will probably consist of the following files (we explain their format in §5):

– P.ccg : The CCG grammar as text file. You write this one.
– P.ccg.lisp : The Lisp translation of the P.ccg file. This file is generated when you call mlg

function. This is the file used when you parse and rank expressions. It is the file whose parameters can
be subjected to training. Unless you call mlg again or overwrite this file yourself, this file is untouched
by the system. The trainer keeps the trained grammar in memory until you save the results by calling
save-training.8

– P.sup : The supervision file in native format (optional). This is the training data for PCCG parameter
estimation. It consists of expression-LF pairs in a list. Syntax and derivations are hidden variables
in PCCG, and training is done solely on expression-LF pairs. These LFs are binarized in the native
format. The lambda layer wants that. Here is an example native .sup file:

(
((JOHN PERSUADED MARY TO BUY THE CAR) (((("PERSUADE" (("BUY" ("DEF" "CAR")) "MARY")) "MARY") "JOHN")))
)

– P.supervision : A simpler way to create the .sup file (optional). Content is semicolon-separated
sequence of training pairs such as below.

words:lf;
where words are space-separated, and lf is as parenthesis-free as it can be. Such LFs are much easier
to write (and less error prone), unless you are a parenthesis monster. CCGlabwill do the conversion to
curried LFs, i.e. put lots of parentheses. The trainer works on native LFs like those in .sup.

Here is the .supervision file you can write to get the .sup file above by calling make-supervision

JOHN PERSUADED MARY TO BUY THE CAR : !PERSUADE (!BUY (!DEF !CAR) !MARY) !MARY !JOHN ;

Only these files are checked by CCGlab for their existence and well-formedness. If you are a grammarian,
all you need is .ccg to create .ccg.lisp. If you are a modeler, you will also need .sup.

4 Workflows
There are basically two workflows. Model development cannot be fully worflowed, so it’s harder.9 In the
cases below, the Lisp parts must be done after you launch CCGlab. The README.md file in the repository
explains how.

4.1 Grammar development and testing
If you start with a linguistically-motivated grammar, you’d probably take the following steps. Let’s assume
your project’s name is example:

1. In your working directory, write your grammar and save it as plain text e.g. example.ccg
2. In CCGlab do (make-and-load-grammar "example")

This means Lisp tokens will be generated by tokens bash script from within Lisp.
This step prepares the example.ccg.lisp file and loads it onto Lisp.
If you update your example.ccg source you must re-make the grammar. Short form is mlg.

3. Do: (p ’(a sequence of words)) to run the parser.
Replace p function with rank to run the parse-ranker.

4. Do: (ders) to see all the derivations, or (probs) to see ranked parses.
You can restrict the display to some results only, by using this function as
(ders <bcat>), where <bcat> is a basic category. Calculations will be done
with all available results, but only derivations onto <bcat> will be shown.
Run (cky-pprint) to see the CKY table. It prints good detail for debugging.

If there are errors in your grammar file, step 2 will fail to make/load the grammar, and you’d need to go back
to editing example.ccg to fix it. Partially-generated example.ccg.lisp will tell you where the first error
was found, so multiple errors are caught one by one (sorry).

8Legacy file types such as .ded and .ind are deprecated. If you have them, and spent a lot of effort developing, just rename them
with .ccg.lisp extension for current use.

9Grammar development cannot be fully workflowed either, but that’s another story. Beware of claims to the contrary. This is good



5

4.2 Model testing
At some point, you may turn to modeling. It usually means taking the example.ccg.lisp file and adjusting
its parameters (because they were set to default in file creation) by parameter estimation, and playing with
its categories. Keep in mind that parameters are weights, not probabilities.

Model training is not easy to reduce to a standard workflow because it depends on what your model is in-
tended to do (whereas we all know what a grammar is supposed to do—get to semantics). CCGlab helps with
the basics (by having weights associated with every lexical element), to compute (1–2) and other formulae
such as (3–6), to be explained soon.

In the end, you create an example.ccg.lisp file in the same format that you started. This means that
every lexical entry (lexical item or unary rule) is associated with a parameter. This is the minimum. If
you have more parameters, you must write some code above the minimal machinery provided by CCGlab to
change training. The model testing workflow is:

1. In CCGlab, do: (load-grammar "example")
This will load the grammar in example.ccg.lisp along with its parameter set.

2. Do: (rank ’(a sequence of words)) to parse then rank the parses.
3. Do: (probs) to see three results for the input: (i) most likely LF for it, (ii) its most likely derivation,

and (iii) most likely derivation for any LF for the input. You can also do (cky-pprint) to see the
CKY table. If you like, do (ders), for display without ranking. It does not recompute anything.

There is an on/off switch to control what to do with out-of-vocabulary (OOV) items. If you turn it on
(see Table 5), it will create two lexical entries with categories X\?X and X/?X for every unknown item so that
the rest can be parsed along with the unknown items as much as it is possible with application. This much
knowledge-poor strategy is automated. Their LFs are the same: λ p.unknown′ p. In training it seems best
to keep the switch off so that OOV items are complained about by CCGlab for model debugging; in testing
wide-coverage parsers might opt to switch it on (no promises).

4.3 Model development: parameter estimation
Parameters of a .ccg.lisp file can be re-estimated from training data of (Li,Si) pairs where Li is the logical
form associated with sentence Si. The log-likelihood of the training data of size n is:

O(θ̄) =
n

∑
i=1

logP(Li | Si; θ̄) =
n

∑
i=1

log(∑
T

P(Li,T | Si; θ̄)) (3)

Notice that syntax is marginalized by summing over all derivations T of (Li,Si).
For individual parameters we look at the partial derivative of (3) with respect to parameter θ j. The local

gradient of θ j with feature f j for the training pair (Li,Si) is the difference of two expected values:

∂Oi

∂θ j
= E f j(Li,T,Si)−E f j(L,T,Si) (4)

The gradient will be negative if feature f j contributes more to any parse than it does to the correct parses
of (Li,Si). It will be zero if all parses are correct, and positive otherwise. Expected values of f j are therefore
calculated under the distributions P(T | Si,Li; θ̄) and P(L,T | Si; θ̄). For the overall training set, using sums,
the partial derivative is:

∂O
∂θ j

=
n

∑
i=1

∑
T

f j(Li,T,Si)P(T | Si,Li; θ̄)−
n

∑
i=1

∑
L

∑
T

f j(L,T,Si)P(L,T | Si; θ̄) (5)

Once we have the derivative, we use stochastic gradient ascent to re-estimate the parameters:

Initialize θ̄ to some value. (6)

for k = 0 · · ·N−1
for i = 1 · · ·n

θ̄ = θ̄ +
α0

1+ c(i+ kn)
∂ logP(Li|Si; θ̄)

∂ θ̄

for business, for us grammarians.



6

where N is the number of passes over the training set, n is the training set size, and α0 and c are learning-rate
parameters (learning rate and learning rate rate). The function update-model computes (6) by taking these
as arguments. We use the inside-outside algorithm, that is, non-zero counts are found before the loop above,
and the rest is eschewed. Both formulae can be beam-searched to make large models with long training
feasible. You can turn it off (default) to see the complete update of the gradient—prepare for a long wait in
a large model.

This is gradient ascent, so initialize θ̄ accordingly. You can standardize them as z-scores, if you like. It is
very useful for developing models, to keep them away from floating-point over/underflow. The partial deriva-

tive in (6) is
∂Oi

∂ θ̄
, for the training pair i, i.e. without the outermost sums in (5). It is what update-model

computes first, then (6).
For example we can use the following workflow for model update:

1. (make-supervision "example"))
The file example.sup will be generated from example.supervision.

2. (lg "example")
example.ccg.lisp will be loaded. lg is same as load-grammar.

3. (um "example" 10 1.0 1.0) um is same as update-model
updates the currently loaded grammar. The learning parameters are provided.

4. (show-training) shows training.
5. (save-training "new-model") saves training in new-model.ccg.lisp.
6. (lg "new-model")

loads the file new-model.ccg.lisp just saved. Now you can parse and rank with it.
There is also a version of gradient update based on extrapolation. To use it, call update-model-xp and

show-training-xp at steps 3 and 4, respectively. Eliminate iteration count (10 in step 3) from learning
parameters. It runs fixed number of iterations (currently four) and extrapolates from there. The limits it
finds usually fall between the kind of numbers you get with 6–10 iterations, which is quite handy for the
development cycle.

4.4 A compiler for type-raising
You can manually set up your type-raising system. You can also use the compiler for that. For best results,
remove the hand-written type-raising rules from your grammar first before using the compiler.

The compiler goes over all the argument-takers you have specified by identifying them from their POS
tags. For each one, for its outermost argument, it generates the type-raised type. For example for the verbal
category (S\NP)/NP, it will take the ‘/NP’ and raise it to (S\NP)\((S\NP)/NP), because of its directionality.
For S\NP, it will take the ‘\NP’ and generate S/(S\NP). The semantics is always the same: λ p.pa′ for some
argument a′.

It creates lots of rules, some of which may be redundant, because many verbs share the same argument
structure if they happen to be in the same morpholexical class (valency, case, agreement, etc.). A rule
subsumer then goes over these automatically-generated rules and finds a smaller set.

An example workflow is:
1. (mlg "example")

The file example.ccg.lisp will be generated from example.ccg.
2. (tr "example" ’(iv tv))

loads example.ccg.lisp and applies type-raising to all functions with POS tags iv and tv.
3. (mergesave-tr "example-tr")

Saves the compiled and subsumed type-raising rules along with current grammar.
4. (lg "example-tr") loads the file just saved, which is example-tr.ccg.lisp.

Now you can parse/rank with type-raising unary rules in the grammar. Step 2 creates a log of warnings.
Warnings are about raising a non-basic type or having no argument to raise.

5 CCGlab representations
The first subsection of this section is for everyone. Others may be relevant to developers and modelers.



7

5.1 .ccg file format
Here is an example textual input to CCGlab, typed by me.

% a mini CCG grammar in CCGlab

mur n := N : !wall;
um aff := ((s\np[case=nom])/((s\np[case=nom])\np[case=acc]))\n : \x\p.p x;
balb n := N : !balb;
us aff := (s/(s\np[case=nom]))\n : \x\p.p x; % manually value-raising the input N
aedificat v := s\np[case=nom]\np[case=acc] : \x\y.!build x y;

A file of this type defines lexical items and unary rules in Steedman style, with the following amendments
(stylistic ones are marked with ‘–’, not-so-stylistic ones with ‘?’):

– ‘;’ is the terminator of a lexical specification. It is required. Each spec must start on a new line. It can
span more than one line.

– ‘-->’ is the unary rule marker. Keep in mind that unary rules of CCG are not necessarily lexical rules.
? Unary rules take an LF on the left in one fell swoop and do something with it on the right. That means

you have to have a lambda for the same placeholder first on the right to make it functional. Here is an
example (manually type raising by a unary rule):
(L1) np[agr=?x] : lf --> s/(s\np[agr=?x]) : \lf\p. p lf ;
Here is another one (verb raising to take adjuncts as arguments):
(d-shift) vp : lf --> vp/(vp\vp) : \lf\q. q lf;

? A part-of-speech tag comes before ‘:=’. Its value is up to you. (This is the only way CCG can tell
whether e.g (S\NP)/(S\NP) can be a verb—say ‘want’—rather than an adjunct, which is crucial for
type-raising.) Type-raising compiler finds verbs through the verbal POS tags.

? Special categories are pseudo-atomic. They start with @, e.g. @X. They must be lexically headed, and
they must be across the board in a category. For example, and := (@X\*@X)/*@X:.. is fine but
so := (@X/*@Y)/*(@X/*@Y):.. is not. And := (S\*NP)/*@X:.. is bad too. They do not have
extra features apart from what is inside the @Xs, which are imposed in term match. We therefore
avoid—once again—the need for structured unification.

? If you use an @X category in a unary rule, it will be treated as an ordinary category (so don’t).
– Non-variables in LF must be Lisp strings, or they must be prefixed by ! to avoid evaluation by Lisp.

Write hit′ as !hit. It will be converted to the Lisp string constant "hit" by a Lisp reader macro. Using
non-alphabetic symbols in these LF constants produces unpredictable string matching performance.

? Avoid names for LF variables that start with the special symbol ‘&’. Combinators use it. The only
exception is the identity combinator, &i, which you may need in an LF when a functor subcategorizes
for a type-raised argument rather than the argument itself.10 The ‘tokens’ script converts your &i to
(LAM x x).

? The double slash has been implemented. In X//Y Y and Y X\\Y , Y must be lexical to succeed. The
modality of \\ and // is always application only. The result X is assumed to be lexical too.

– Phonological strings that span more than one word must be double-quoted. You must use them as
such in your parse string as well. The contents of a string are not capitalized by the Lisp reader
whereas everything else is made case-insensitive, which must be kept in mind. The tokenizer does not
transform a string constant if its starts at the beginning of a line, and skips the rest of the line for case
conversion etc. We recommend writing string-type phonological values in a line of their own. Spacing
and spanning multiple lines for an entry aren’t important in CCGlab, so it should not be a problem.

– Features need names. The basic categories in Sfin/(Sfin\NP3s) could be s[type=fin] and np[agr=3s].
Order of features is not important if you have more than one. They must be comma-separated.

– Capitalization is not important for names, unless they are in a string constant. This is also true of
atomic categories, feature names, and values. NP is same as np. Lisp does capitalization, not CCGlab.

– Comments start with ‘%’. The rest of the line is ignored.
? Because CCGlab knows nothing about non-lambda internal abstractions such as the x in the logical

form \p\q.(!forall x)(!implies (p x)(q x)), it cannot alpha-normalize them to rename x to

10An example of this formal need can be given as follows. Suppose that we want to subcategorize for a type-raised NP, e.g. f :=
S/(S/(S\NP)) : λ p.f ′(p(λx.x)). Type-raised arguments are universally λ p.pa′, so an argument could be e.g. a := S/(S\NP) : λ p.pa′.
Application of f to a would be odd if we didn’t have λx.x inside the LF of f , because f seems to be claiming—by its syntactic



8

something unique. This opens ways to accidental variable capture if some CCGlab combinator hap-
pens to abstract over the same variable, say λx. f (gx) for composition. We wouldn’t want this x to
replace the LF x. If you intend to reduce (q x) to substitute for some lambda in q via x, you must ab-
stract over it to ensure alpha-normalization; say \p\q\x.(!forall x)(!implies (p x)(q x)).
Assuming that x is not a syntactic variable but p,q are, it will substitute the variable in p,q and
keep the (!forall x). If this is not what is intended, then use a naming convention for non-lambda
variables which will not clash with CCGlab variables. Doubling the name as xx is my convention,
e.g. \p\q.(!forall xx)(!implies (p xx)(q xx). Prefixing or postfixing the variable with an
underscore is also a safe convention. Prefixing it with & is not. Combinators use this convention.

The rules for lexical specifications are given in Table 1. They are used by the LALR parser, which converts the
system-generated .lisptokens version of a textual grammar to .ccg.lisp. You will notice that lambdas
can be grouped together, or written separately. Both λxλy.hit′xy and λx.λy.hit′xy are fine, and mean the
same thing. As standard, CCG slashes and sequencing in the body of an LF are left-associative, and lambda
binding is right-associative.

All LF bodies will be curried internally. For example, you can write ‘\x\y\z.!give x y z’ in the
.ccg file for convenience. It will be converted to ‘\x\y\z.((!give x) y)z’. Beta normalizer wants that.

5.2 .ccg.lisp file format
These files are lists of (name value) pair lists bound to the global variable called *ccg-grammar*. We
chose such pairs because Lisp’s usual choice for such simple mappings, association lists, are difficult to
read.11 Table 2 describes the format. For CCGlab, the order is not important in these lists because the names
are unique.

5.3 .sup and .supervision file formats
These are the supervision files for training. The .sup is the native format, which is difficult to type because
LFs must be curried. You can get it from the .supervision file which does that for you, which has the
syntax of line-separated specs of the form

data : lf ;
where each lf has the same format as in .ccg file. The repository ccglab-database has examples.

5.4 The logical form’s form
All internally translated LFs are curried. Your LFs in .ccg and .supervision files are curried automati-
cally by the system. In fact, it is best in these source files if you leave currying the second type of lambda
terms below to the system; just write (((a b)c)d) as a b c d. Lambda is not Lisp’s ‘lambda’. Formally,
the mapping from λ -calculus to CCGlab’s LFs is:12

x or c → Lisp symbol or constant
(e e) → (e e)
λx.e → (lam x e)

You can see from Table 1’s non-terminal called ‘l f ’ that CCGlab’s LFs can have inner lambdas. In the source
files .ccg and .supervision, lambda bindings can be grouped, anywhere in the LF, with one dot. Or they
can be written one lambda at a time before each dot. Therefore any lambda-term can be LF, which means
you have to watch out for non-termination. This is an extension from earlier “supercombinator” LFs so that
training can be done on more complex LFs depending on task.

5.5 Parser’s representations
All parser objects are converted to hash tables during parsing and training. COMMON LISP’s hash tables are
expressive devices. They do not support hash collision or chaining (we like them this way), and the keys

category—that its predicate-argument structure is f ′a′, not f ′(λ p.pa′).
11In Lisp terminology an association-list is (name.value), rather than (name value). It is easy to feel annoyed when there are

too many of these ‘.’ to look at. Since we do sequential search only during pre-parsing, efficiency is not the concern here; legibility is.
In Lisp, rest returns the value of an association pair, whereas second returns the value of a name-value pair.

12This layer is added so that you can see the inside of reduced lambdas. Lisp compilers implement and display closures differently;
so there is no guarantee that native lambda is transparent. Normal-order evaluation of LFs is done at this layer.



9

can be anything, even a function or another hash table. We harness this property. Unlike association lists,
access to a key’s value does not involve search, e.g. formula (1) is computed without search because beta-
normalized LF is the key for that formula’s table. When you have Catalan number of potential logical forms
to check, you’ll appreciate this property. (We employ alpha-equivalence of lambda-calculus in counting
different LFs.)

There are five kinds of hash tables in CCGlab. Table 3 shows example snapshots during parsing. Their
keys and structure are explained in Table 4.

5.6 How CCGlab’s term unification works
First we re-iterate that there is no re-entrant unification in CCGlab. Term unification is used for category
matching. Its details may be useful to developers, so here is how it works.

Assume the following projection rule for CCG, viz. substitution.
(X/Y)/Z Y/Z → X/Z

There are two Y’s to match in the rule, and two Z’s, to project by this rule. Notice that Z is passed on, and
Y match is needed to see if rule’s conditions are satisfied, so that we can project its unique semantics, viz.
λx. f x(gx) where f is semantics of the first element, and g is that of second.

In each one of these matches function cat-match creates a binding list of features in these categories,
one on each category, so there are four of these binding lists (for first Y, second Y, first Z, second Z).
These are required because some features may have variable value, which are always atomic; for example
Y[agr=3s,pers=?p], where ‘pers’ has a variable value. These features can be used in other parts of the
input category, say by X and Z on the first input category, and by Z in the second. To obtain the result, these
binding lists are reflected on other parts of the input locally, by function realize-binds.

For example, the following input to the rule above produces the righthand side below, where ‘pol’ fea-
ture’s value from the second element is not in the binding list, so continues to be a variable in the projection
of the first element; whereas ‘agr’ feature of S is now ‘3s’ because this is now the value of ‘?a’ variable, and
it is in the binding list of the NP in the first element. The NP in the result carries bindings of two input NPs
because both elements use the NP (Z in the rule).
S[pol=?p,agr=?a]/VP[type=inf]/NP[case=nom,agr=?a] VP[pol=pos]/NP[case=?c,agr=3s]

--> S[pol=?p,agr=3s]/NP[case=nom,agr=3s]
Therefore, if a feature is not in the binding list, it will not be valued in the elements projected if it has

a variable feature. The example (c) in §2 shows what is at stake if we begin to project things that were
not involved in the category match. The first elements of (a)’s ‘f2’ feature has nothing to do with second
element’s ‘f2’ feature, therefore both get locally projected, as in (b).

As a rule, bindings of the first element are reflected on the projected parts of the first element; bindings
of second element are reflected on the projected parts of the second element; and, bindings of both elements
are reflected on the projected common element.

This is the main reason for abundance of fresh hash tables at run-time, where results are kept as such for
speed. All projected valuations can be unique to a particular rule use, hence need a fresh copy of results.

6 Top-level functions, and names to watch out for
The basic parsing functions were explained in §4. Others are quite useful for grammar development and
testing. A more comprehensive list is provided in Table 5. The code includes commentary to make use of
them and others. All CCGlab functions are callable if you know what you’re doing.

The names of all the features and hash table keys listed in Tables 2 through 4 are considered reserved
names by the system. You will get a warning message from make-and-load-grammar if you use them
in your .ccg file. Using them as a basic category feature results in unpredictable behavior. For example,
if you use ARG as a feature, the system might crash because it expects such features in right places to be
hash-valued at parse time.

7 CCGlab in the large
Two aspects will interact to build a feasible model space: data/experiment space, and solution space. Solu-
tion space is reflected in the size of CKY parse tables. This size is controlled by the slash modalities (more



10

liberal slashes, more analyses), beam search over solutions (on/off), and normal form parsing (on/off). A
balancing act is usually called for. For data space we comment later about using multiple processors.

Some comments on public COMMON LISPs for their suitability for large-scale development: So far
SBCL has proven itself for this task. First, it compiles all Lisp code by default. More importantly, although
CCL has a dynamically growing heap, its implementation of sort is very slow compared to SBCL, and it is
a commonly used function. Neither SBCL nor CCL are known for their blizzard hash table speeds, and their
minimum hash table sizes are a bit annoying (because some of the hash tables we use have small number
of keys), but at least they are transparent because they are type-complete and collision-free. Non-ANSI
Common Lisps are not compatible with CCGlab.

7.1 The beam
Beam search is possible to re-estimate the parameters in the inside-outside algorithm in a shorter amount of
time. There is a switch to control it. Number of CCG derivations can grow up to Catalan numbers on input
size if left unconstrained. Beam is one way to constrain it. By default it is off.

Sort is essential to the beam. We use the formula nb, where 0≤ b≤ 1. The n here is the number of parses
of the current input. For example b = .9 eliminates very few analyses if n is small, large amounts when it’s
large. Before you play with the beam system (b value and its on/off switch), I’d suggest you experiment with
learning parameters N,n,α0,c in (6) and the extrapolator.

7.2 Heap and garbage collection
One easy way to get the best of both worlds of fast sort and big heap is to adjust the CCGLAB_LISP variable
after install. For example, if you do the following before running CCGlab, it will set SBCL’s heap to 6GB.

export CCGLAB_LISP=’/usr/bin/sbcl --noinform --dynamic-space-size 6000’

CCL won’t give you trouble in long training sessions; it won’t go out of memory. You have to check whether
it is doing useful work rather than garbage-collecting or thrashing. SBCL gives you two options if you use
too much memory: (i) recompile SBCL or (ii) increase maximum memory maps with e.g. ’sudo echo
262144 > /proc/sys/vm/max_map_count’. The second option seems to work well without recompile.13

This is the number of maps, not memory size.
One way to avoid excessive garbage collection is increasing its cycle limit, which is 51MB by default in

SBCL. Making it too big may be counterproductive.

7.3 Normal-form parsing
Normal Form (NF) parsing is an option to reduce the number of LF-equivalent parses substantially. We use
the method by Eisner (1996) which eliminates them at its syntactic source, rather than generate-and-test the
LFs. This means that once turned on non-normal parses won’t make it into the CKY table to effect the lexical
counts, which must be kept in mind in models and training. NF parse option is available both in parsing and
ranking modes. There is one switch to control is behavior, listed in Table 5.

NF parse is not recommended if you are exploring surface constituency in all its aspects, especially
phonology; but, it is very practical for modeling and parameter re-estimation. It can be used in conjunction
with beam search to reduce the calculations of the inside-outside algorithm even more.

Unary rules and type-raising do not combine, therefore any “redundancy” caused by them in the deriva-
tions is not eliminated by NF tags; see Eisner’s paper for explanation. Moreover, CCGlab’s unary rules are
not necessarily lexical; they can apply to the result of a derivation. Because they change the input syntactic
type and/or LF, we start with a fresh lexical tag (called ‘OT’ in Eisner paper) for the output of the rule.

7.4 Training on large datasets
Parsing after training is fast. Type-raising can change that if there are too many rules to apply.14

In any case you need all the help you can get in training. A bash script named train-sbcl-multithread
is available in the repository to run various experiments simultaneously if you have multicore support. It

13If you get permission errors even with sudo try this: ’echo 262144 | sudo tee /proc/sys/vm/max_map_count’.
14How many is too many? something around 1,000 seems somewhat noticeable, half of that hardly noticeable, more than 5,000

needs coffee break, or maybe taking over a processor farm.



11

reads all the arguments to trainer-sbcl from a file, each experiment fully specified on a separate line,
requests as many processors as experiments, and calls them using xargs command of linux. It does not
make use of SBCL’s multi-threading; all of this is done on command line. Each experiment in multi-thread
case is individually nohupped; that is, they are immune to hangups and logouts (but not to control-D; let the
terminal process die rather than control-D it).

Here is one example of an experiment file, g1.exp:

7000 4000 g1 t xp 1.2 1.0 train-basic-xp basic-ccg
4000 2000 g1 t 10 0.5 1.0 train-10

You would run it as: train-sbcl-multithread g1.exp.
It will fetch two processors, one using 7GB of RAM in which 4GB is heap, the other with 4GB RAM

and 2GB of heap, loads g1.ccg.lisp and g1.sup in both cases, saves the result of training because of t
(specify nil if you don’t want to save the trained grammar). The rest are training parameters: xp means use
the extrapolator. The second experiment does not extrapolate; it iterates 10 times. Then comes learning rate,
learning rate rate, prefix of the log file (full name is suffixation of training parameters), and the function to
call before training starts. In the first experiment it is basic-ccg. In the second experiment, there is nothing
to call.

The bash script train-sbcl-1 is a 9-argument monster. It assumes that constraints which are not
within control of SBCL are already handled, such as /proc/sys/vm/max_map_count above. Even if you
have no multicore support, use train-sbcl-multithread to run this script. If you have only one line of
experiment data, it will fetch one processor anyway, and you’d be free of hangups.

7.5 Many Lisps
You can work with many Lisps for CCGlab at the same time by setting the shell variable CCGLAB_LISP to
different Lisp binaries in a shell. The default is set by you during install. The system will detect your Lisp
from the basename of its binary. If it is not SBCL or CCL or public AllegroCL, it is set to SBCL by default,
which means it will call run-program with SBCL conventions when running CCGlab in your Lisp. Have
a look at how run-program API is used by sbcl and ccl in the code. You may want to add another case
suited to your Lisp, and set the *lispsys* variable to your Lisp.

7.6 Hash tables and growth
The hash tables for the CKY parser can grow very big. To work with very long sentences or many automati-
cally generated type-raising rules without rehashing all the time, change the variable *hash-data-size* to
a bigger value in ccg.lisp source. Tables of these sizes (two tables: one for CKY parses, one for different
LFs in argmax calculation) are created once, during the first load, and cleared before every parse.

There is a path language for nested hashtables, i.e. hashtables which take hashtables as values of features.
Rather than cascaded gethash calls, you can use the machash macro. See Table 5. By design, CKY hash
tables are doubled in size when full. The logic here is that, if the sentence is long enough to overflow a big
hash table, chances are that the table is going to grow just as fast, and we don’t want to keep rehashing in
long training sessions.

7.7 Z-scoring and floating-point overflow/underflow
Because of exponentiation in formula (2) you have to watch out for floating point overflow and underflow.
If the parameters become too large or small, which may happen if you run many training sessions on the
same grammar, you can z-score a grammar as explained in Table 5. In a z-scored grammar all parameters
are fraction of the standard deviation distant from the mean. Two methods are provided: (i) assuming that
all elements of grammar come from the same distribution, (ii) finding sample means and standard deviation
per lexical form, because the same form’s different lexical entries are competing in parsing and ranking,
respectively called z and z2. If you will merge grammars later on, the second method would be unpredictable
but first method might be fine if they come from the same distribution. You can set a threshold for cutoff
and a comparison method; see Table 5. Z-scoring is better than normalization because it maintains the data
distribution’s properties like mean and variance. (Don’t forget to save that updated model.)

Z-scoring is also useful if you want to compare relative entropy of two probability distributions. The klz
function in Table 5 computes Kullback-Leibler divergence of two probability distributions. It uses z-scores



12

of parameters to compute probabilities.

7.8 CCGlabdatabase and license
The repository ccglab-database is a collection of grammars and models written in CCGlab. Older repos-
itories are not maintained anymore.

CCGlab is GPL licensed public software; you can modify and use it as part of a software system, but you
cannot copyright CCGlab; you must pass on the GPL license as is.

Acknowledgments
Translations from .ccg to .ccg.lisp format and from .supervision to .sup format are made possi-
ble by Mark Johnson’s LALR parser. Translation of the LFs of paper-style representations in .ccg to a
self-contained lambda-calculus processor is based on Alessandro Cimatti’s abstract data structure imple-
mentation of lambda calculus. Thanks to both gentlemen, and to Luke Zettlemoyer for help with the PCCG
paper. (Without the lambda translation, you’d be at the mercy of a particular Lisp implementation of closures
to get the formula (1) right, or to verify derived LFs.) Adnan Öztürel convinced me to think again about
normal form parsing. This time I made it optional.

I thank Lisp community, stackoverflow and stackexchange for answering my questions before I ask them.
I am grateful to my university at Ankara, ODTÜ; to Cognitive Science Department of the Informatics

Institute, for allowing me to work on this project; to Turkish TÜBİTAK for a sabbatical grant (number
1059B191500737), which provided the financial support for a research of which this work is a part; to
ANAGRAMA group of the CLUL lab of University of Lisbon, Amália Mendes in particular, for hosting me
in a friendly and relaxed academic environment; to Paulo Quaresma and António Branco for sharing their
resources with me; and to my officemates at CLUL, Sandra Antunes, Amália Andrade, Hugo Cardoso, Nuno
Ferreira Martins and Rita Santos, all of whom made CCGlab possible.

I thank Datça geography and weather for respectively inspiring multi-threading and cooler CPUs, Ankara’s
nowadays dying long winters for enjoying programming more than I should, and Lisbon’s miradouros, in
particular Miradouro de Santa Catarina and Miradouro de Graça, for the opposite effect. I wish I could
blame good weather for remaining errors.

References
Baldridge, Jason. 2002. Lexically Specified Derivational Control in Combinatory Categorial Grammar.

Doctoral Dissertation, University of Edinburgh.
Bozşahin, Cem. 2012. Combinatory Linguistics. Berlin: De Gruyter Mouton.
Bozşahin, Cem, and Arzu Burcu Güven. 2018. Paracompositionality, MWEs, and argument substitution.

In Proc. of 23rd Formal Grammar Conference. eds.Annie Foret, Greg Kobele, and Sylvain Pogodalla,
16–36. Berlin: Springer.

Clark, Stephen, and James R. Curran. 2003. Log-linear models for wide-coverage CCG parsing. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing, 97–104. Sapporo,
Japan.

Eisner, Jason. 1996. Efficient normal-form parsing for Combinatory Categorial Grammar. In Proceedings
of the 34th Annual Meeting of the ACL, 79–86.

Graham, Paul. 1994. On Lisp. Englewood Cliffs, NJ: Prentice Hall.
Pareschi, Remo, and Mark Steedman. 1987. A lazy way to chart-parse with categorial grammars. In Pro-

ceedings of the 25th Annual Meeting of the ACL, 81–88.
Steedman, Mark. 1996. Surface Structure and Interpretation. Cambridge, MA: MIT Press.
Steedman, Mark. 2000. The Syntactic Process. Cambridge, MA: MIT Press.
Steedman, Mark. 2012. Taking Scope. Cambridge, MA: MIT Press.
Steedman, Mark, and Jason Baldridge. 2011. Combinatory Categorial Grammar. In Non-transformational

Syntax. eds.R. Borsley and Kersti Börjars, 181–224. Oxford: Blackwell.
Zettlemoyer, Luke, and Michael Collins. 2005. Learning to map sentences to logical form: Structured

classification with probabilistic categorial grammars. In Proc. of the 21st Conf. on Uncertainty in Artificial
Intelligence. Edinburgh.



TABLES 13

Table 1: .ccg format specification. (.supervision has same syntax for the l f symbol).

lex conventions: T : Any token @A : special category ?A: value variable
!A: LF constant "A" Default modality: . % : start of comment

start → start lex; | lex; eqns → eqns , eqn | eqn
lex → T mtag := cat | lrule eqn → T = T
lrule → (T ) cat --> cat dir → \ | /
mtag → T mod → . | ^ | * | +
cat → sync : l f l f → bodys | lterm

lterm → \ T {.} lbody
sync → basic | parentd | sync slash syn lbody → lterm | bodys
syn → basic | parentd bodys → bodys body | body
basic → T f eats body → (bodys)
parentd → (sync) body → T
slash → dir mod | dir| ddir ddir → \\ | //
f eats → [eqns] | ε body → (lterm)

Table 2: .ccg.lisp file type’s feature names in name-value pairs lists.

BCAT: basic category FEATS: basic category features as name-value pairs list
DIR: directionality of a complex category MODAL: slash modality (ALL CROSS HARMONIC STAR)

lex item features lex rule features
PHON phonological form INSYN input category

MORPH pos tag INSEM input lf
SYN syntactic type OUTSYN output category
SEM logical form OUTSEM output lf

PARAM parameter value PARAM parameter value

Table 3: (a): CKY representation for: ‘hits v := (s\+ np[agr=3s])/np : \x\y. !hit x y;’ during function
call (p ’(hits)). A ‘#’ means the value is a hash table. It is not part of the name. (b): ARGMAX representation for:
‘hits v := (s\+ np[agr=3s])/np : \x\y. !hit x y;’ after (ccg-deduce ’(hits)). LF shown is the key.
It is beta-normalized, given this input to the parser.

(a) (1 1 1) LEFT (1 1 1)
RIGHT (1 1 1)
SOLUTION# PHON HITS

MORPH V
SYN# RESULT# RESULT# BCAT S

ARG# BCAT NP
AGR 3S

DIR BS
MODAL CROSS

ARG# BCAT NP
DIR FS
MODAL ALL

SEM (LAM X (LAM Y (("HIT" X)Y)))
INDEX LEX
PARAM 1.0
TAG OT
KEY unique key of hits in the lexicon

LEX T

(b) (LAM X (LAM Y (("HIT" X)Y))) (1.0 ((1 1 1)))



TABLES 14

Table 4: Keys and value types for CCGlab hash tables, and the global variables.
Table type Key Value Description
CKY (I J K) (LEFT RIGHT SOLUTION LEX) LEFT/RIGHT’s value: component cells of the solution in (I J K).

I: length of derivation. J: starting position. K: analysis number.
SOLUTION’s value: LEX or CKY-ENTRY table.
LEX value: true or false.

CKY-ENTRY SYN table of type BCAT or CCAT Syntactic category hash table
SEM Logical form See §5.4 and Table 1
INDEX Rule index LEX for lex entries, rule name for lex rules, >Bx for >B×, etc.
PARAM real number Cumulative for partial results; lexical for lex entries and unary rules
TAG FC, BC or OT Normal Form tag of the constituent
LEX T or NIL Whether the item is marked lexical (by lexicon or by double slash)

BCAT BCAT symbol or constant Name of the basic category: either constant or ‘@’ variable
BCONST T (true) or false True means BCAT’s value is a singleton type (a string).
FEATS a list elements are (name value) pairs:

((<name> <value>) ..) symbols or constants. <value> can be a ?-variable.
CCAT RESULT table of type BCAT or CCAT Result of a complex category

ARG table of type BCAT or CCAT Argument of a complex category
DIR one of FS BS Directionality, corresponding to ‘/’ and ‘\’ respectively
MODAL name Slash modality. name: one of ALL CROSS HARMONIC STAR
LEX true or false true means the slash in DIR is double in source file.

LEX SYN table of type BCAT or CCAT Syntactic category hash table
SEM Logical form See §5.4 and Table 1
INDEX Rule index LEX
PARAM real number Parameter’s value for that lex entry (set to unity by mlg.)
PHON symbol or string Phonological string for the lex entry
MORPH symbol Morphological category (part of speech) of the lex entry

LRULE INSYN table of type BCAT or CCAT Input syntactic category
INSEM Logical form Input LF as one object. It is the only input to OUTSEM.
OUTSYN table of type BCAT or CCAT Output syntactic category
OUTSEM Logical form Output LF as a function of INSEM. See §5.4 and Table 1
INDEX Rule index Rule name (given by you)
PARAM real number parameter value for the rule (set to unity by mlg).

ARGMAX <lf> (number cells) key: beta-normalized LF of the result.
number: weight-sum, cells: list of cells for the sum

Global variable Type or value; call (globals) to see the current list; (onoff) for switches
*ccg-grammar* List of list of name-value pairs, where current grammar is internally represented.
*loaded-grammar* The name of the currently loaded .ccg.lisp file.
*ccglab-reserved* The list of reserved names to avoid as feature names. You will get a warning message if used.
*ccglab-globals* The list of global variables of CCGlab. Use defccglab if you add more as developer.
*cky-hashtable* CKY table
*cky-lf-hashtable* ARGMAX table for computing formula (1)
*cky-lf* the maximum of the numerator of formula (2) without exponentiation, and its LF
*cky-lf-hashtable-sum* the value of the denominator of formula (2) without exponentiation
*cky-argmax-lf-max* CKY index of the argmax result’s highest weight-summed derivation
*cky-argmax-lf* List of CKY indices which have the same LF as argmax result
*cky-max* CKY index of the highest weight-summed derivation for any LF
*lex-rules-table* List of LRULE tables
*training-hashtable* Keeps progress of parameter updates.

Key is the item’s key. Value is the list of original and current value.
*training-non0-hashtable* Keeps non-zero counts of features for the current parses. Key is the

supervision pair index (base 1), and value is a list of item keys with non-zero counts
in all current parses of the pair. Calculated once before the loop in formula (6).

*supervision-pairs-list* List of sentence-LF pairs, in this order.
grammar LALR’s preset grammar to convert your textual specs to Lisp
lexicon LALR parser’s token values (i.e. its lexicon, not yours)
lexforms LALR parser’s token types (ID is any name, others are special symbols)

*endmarker* LALR parser’s end-of-input designator, currently set to $ in two places
(by the LALR parser)

*beam-exp* The exponent of beam. Default is .9, for n.9. Lower than 4/5 is not recommended.
*oovp* Set it to nil (default) if you want the tool to complain about OOV; t otherwise.
*lispsys* The Lisp system. Currently recognized values are SBCL, CCL and ALISP.



TABLES 15

Table 5: Some functions of CCGlab. Some shortcuts noted next to names. Call (help) for full list.
(alpha-equivalent <e1> <e2>) Returns true iff two input LFs are structurally equivalent, i.e. if they have the same structure

modulo bound-variable names.
(basic-ccg :nf-parse <nf> :LF <lf> Collective control of rule use. There is also simple-ccg,app-ccg.

:beam <b> :oov <oov> :type-raise <tr>) basic-ccg turns on all non-experimental rules; simple-ccg turns on application and harmonic
composition; app-ccg turns on application only. Key arguments are all optional (:nf-parse etc.),
and default to on (<nf> and <lf>) and off (<b>, <oov>, <tr>). ’on’ is treated same as t, and ’off’

(beam <sw>) Turns the beam on or off, with these as keyvalues.
(beam-value) Current values of *beamp* and *beam-exp*. Use setf to change the exponent before training.
(cky-pprint) Pretty-prints the CKY table with row, column, solution indices so that you can see the values of

syntactic features, LFs, partial results, etc. Strings print unquoted.
(cky-show-lf-eqv) csle Applies normal-order and applicative-order evaluation to the results, and reports the differ-

ences. For this reason, the LFs of intermediate derivations are not beta-normalized during
parsing. We know that they look ugly, but you can in fact cut/paste them and simplify; see
cky-show-normal-forms.

(cky-show-normal-forms <r> <c>) csnf Shows normal forms of all results in CKY table entry row <r> column <c>.
(cky-sem <cell>) Returns the LF in CKY table entry row <r> column <c> result <z>. An argument of type <cell>

is the list (<r> <c> <z>). Use cky-pprint beforehand for help.
(cky-reveal-cell <cell>) crs Prints the deduction sequence ending in CKY table cell <cell>; see cky-sem for <cell>. Final

LF is normalized for mortals; the table is kept intact.
(cky-pprint-probs <cell>) cpp Prints the induction sequence ending in CKY <cell>. See cky-sem for <cell> argument.
(count-local-structure <cell>) Computes the final weight-sum f̄ · θ̄ at the result cell <cell>, from its constituent cells; cf. for-

mula (2). If you change the formula, argmax (1) will be computed correctly if you save the result
in result <cell>.

(ders <cat>) Shows all derivations in paper style. Final LF is displayed normal-evaluated. <cat> is optional.
If a basic category is supplied in <cat>, only solutions with that category are reported (but all are
still computed). Without <cat> or if <cat> is nil all solutions are printed.

(klz <gr> <key pairs>) Finds Kullback-Leibler divergence of items indexed by list of key pairs in a grammar, e.g.
((k11 k12)(k21 k22)..) First member of a pair represents the first distribution, etc.

(lf <sw>) If argument is t, all LFs will be shown in display of a derivation.
The last one is simplified for readability.
Only the final LF of a derivation is shown if switch is nil or off.

(load-grammar <pname>) lg Loads the <pname>.ccg.lisp file.
(make-and-load-grammar <pname>) mlg Compiles and loads the <pname>.ccg.lisp file; generates it from .ccg and .lisptokens files.
(machash f1 ... fn ht) Retrieves feature f1 from .. fn of the hashtable ht. Features f2..fn must be hash-valued.
(make-supervision <pname>) Makes a lisp-ready pname.sup file from pname.supervision and pname.suptokens.
(mergesave-tr <gn>) merges and saves type-raising rules with current grammar
(onoff) list of on/off switches that control parsing.
(oov <sw>) Turms out of vocabulary treatment on or off, with these keyvalues.
(p <list>) Parses the input words in <list>. Returns true/false.
(probs) Shows 3 derivations mentioned in §4.2, in paper style.
(plugin-count-more-substructure <cell>) A plug-in to give you access to all derivational history to extract more features

from result cell <cell>. NB where it is called. Does nothing by default.
(rank <list>) First parses then ranks the derivations for the input words in <list>. Returns true/false.
(reset-globals) Resets the current state of CCGlab grammar to almost tabula rasa.
(rules) To see current switch values and how to control individual rule use.
(show-training) st Shows parameter values for every lexical item before and after training.

the one with -xp suffix shows extrapolation.
(save-training <pn>) savet Saves the currently trained model with the new parameter values to <pn>.ccg.lisp.
(save-grammar <pn>) sg Saves the currently loaded grammar to <pn>.ccg.lisp.
(show-config) Shows switch values and rule switches and beam value.
(status <tag>) Returns a summary of the current state (loaded grammar, its size, CKY info etc.). If no <tag> is

supplied it just prints out highest ranked solution. If optional <tag> is supplied all solutions are
returned in a ranked list (highest first). Useful for re-ranking and selection of subset of solutions.

(tr <gr> <pos> <log>) compile-tr Compiles and subsumes all type raising in grammar gr with argument takers bearing a value from
the list of pos for the feature MORPH. Log file argument is optional; defaults to tr-error.log.

(update-model <pname> <N> <alpha0> <c> Updates a model’s parameters after loading the supervision set <pname>.sup.
:load <l> :verbose <v> :debug <d>) um See §4.3 for meanings of arguments. If <l> is not nil, the model <pname>.ccg.lisp is first

loaded. If <v> is not nil, it displays progress of stochastic gradient ascent through iterations, for
every lexical item. If <d> is not nil, it displays stepwise update of the derivative in algorithm (6).

(update-model-xp <pname> <alpha0> <c> Updates a model’s parameters using extrapolation after loading the supervision set
<pname>.sup.

:load <l> :verbose <v> :debug <d>) umxp See §4.3 for meanings of arguments. If <l> is not nil, the model <pname>.ccg.lisp is first
loaded. If <v> is not nil, it displays progress of stochastic gradient ascent through iterations, for
every lexical item. If <d> is not nil, it displays stepwise update of the derivative in algorithm (6).
See §5.3. :maker is now obsolete but kept as legacy. The Lisp system is automatically detected.

(z-score-grammar :cutoff <val> :method <m> Z-scores the parameter values of the currently loaded grammar. Key arguments are optional.
:threshold <t>) z If <val> is true (false by default), it will ask for a file to save the z-scored grammar.

<m> compares parameter and threshold in order; returns true/false, e.g. ’>, ’<, ’<=, or ’>=
(default). <t> is the limiting z-score value (default 0.0) to survive using method <m>.


